Introduction to HCI Fall 2021

Prototyping Low-Fidelity Prototypes

Mahmood Jasim
UMass Amherst
mjasim@cs.umass.edu
https://people.cs.umass.edu/~mjasim/

© Mahyar with acknowledgements to Joanna McGrenere and Dongwook Yoon

Logistics

► Milestone 1 report due at Midnight

▶ Midterm on October 28th

▶ In-class

▶ 60 minutes

Questions are similar with assignment and in-class activities

Learning Goals

▶ Understand different types of prototyping, purpose and characteristics of each.

List dimensions of prototyping fidelity and explain how these dimensions may vary;

Define and explain low-fidelity prototypes

What is a prototype?

Representation of conceptual design for users (and designers, and other stakeholders) to interact with

- Prototypes take many forms:
- Cardboard, foam, software, video, clay, paper, hidden people, website, sketches, scripts, index cards etc.

Why prototype?

- ▶ Communication: discuss ideas with stakeholders
 - "Where's the ON button?"
- Develop requirements and/or specifications
 - "Uh-oh, here's something we forgot."
- Learning and problem solving
 - "Hey, that will work!"
- Evaluate interface effectiveness for communicating conceptual model
 - "Whoops, users didn't understand that."
- Further develop conceptual and physical design
 - "that's way too heavy"
- Save time and money
 - Don't waste time coding/building the wrong thing

Questions that might need prototyping to answer:

- ▶ For example:
 - Screen too crowded? Actions clear, or lost in clutter?
 - Knob versus slider for controlling volume
 - Much more involved for innovative physical interface
 - ▶ Navigation: e.g.
 - Transparent menu versus solid menu
 - ▶ How many files to show in file selection box

Before you can prototype

- ▶ Before you build, identify:
 - Users and tasks to build your prototype around
 - ▶ Requirements
 - ▶ Goals: questions your prototype(s) need to answer

Types of prototypes

- ▶ Think of prototyping techniques as tools in your bag of tricks
 - Have lots so that you have appropriate one
 - ▶ Just like evaluation methods
 - Should be fast, effective and targeted to the issues
- Don't waste time implementing something that won't teach you anything!
- Fidelity ranges from low to high

Evolution of prototypes

When to use different types of prototypes?

- Choose a representation
- Rough out interface style
- ▶ Task walkthrough & redesign
- Fine tune interface, screen design
- Heuristic evaluation and redesign
- Usability testing and redesign
- Limited field testing
- ► Alpha/beta tests

- early design
- Low fidelity prototypes
- Medium fidelity prototypes
- High fidelity prototypes
- Working systems

late design

Low fidelity prototypes

- ▶ Meant to be rough, quick to build, easy to throw away
- Proof of concept(s)
- Rough (but flexible) interface design
- ► Facilitate communication with users early on
 - Can be useful for generating and narrowing requirements

Benefits of low fidelity prototypes

- ▶ Cheap/easy to make
- ▶ Try out and explore multiple conceptual models
- Lack of polish less intimidating to users this is surprisingly important!
 - More willingness to criticize
 - ▶ Inspires more creative feedback
 - Avoids nitpicky feedback
- Reduces effort invested by design team
- So easier to make changes, start over

IDEO surgical tool prototype

Approaches to prototype/product integration

- ► Throw-away
 - Prototype only serves to elicit user reaction.
 - Creating prototype must be rapid, otherwise too expensive
- ▶ Incremental
 - ▶ Product built as separate components (modules)
 - ▶ Each component prototyped and tested, then added to the final system
- Evolutionary
 - ▶ Prototype altered to incorporate design changes
 - Eventually becomes the final product

Approaches to 'scoping' prototype functionality

- Vertical prototype
 - ▶ Includes in-depth functionality for only a few selected features
 - ▶ Key design ideas can be tested in depth
- Horizontal prototype
 - Surface layers only: includes the entire user interface with no underlying functionality
 - ▶ A simulation; no real work can be performed
- ▶ Prototype scenario
 - Scripts of particular fixed uses of the system; no deviation supported
 - See whole thing (fake)

Paper prototyping

- Common low fidelity technique
 - ▶ Popular in industry . . .
 - Despite prevalence of 'mockup' software tools
- ▶ Because: easy to
 - ▶ Build
 - ► Alter on the fly
 - ▶ Show
 - Stick on wall & compare
 - Discuss

photo: http://hci.stanford.edu/courses/cs247/2009/handouts/paper-2009-exercise.html

Paper prototyping materials

- ▶ Interface elements/screens created on paper
 - Or other 'easy to throw away or modify' materials, e.g.,
 - Whiteboard, magnetic taps, transparencies
 - Can incorporate other things that people interact with in completing their task, e.g.:
 - ▶ Other people
 - Hardware

Simulating interactions in paper prototyping

- Can simulate relatively sophisticated interactions
 - ▶ Complex/subtle interactions won't be perfect
 - Requires some imagination on users' part
 - ▶ Forces you to stay in "early design" mode
- With some creativity, can mockup almost any kind of widget or interaction

Rapid Prototyping 1 of 3: Sketching & Paper Prototyping

https://www.youtube.com/watch?v=JMjozqJS44M

Wizard of Oz ("WOZ")

- A method of testing a system that does not exist
 - ▶ the voice editor, by IBM (1984)

From Gould, Conti & Hovanvecz, Comm ACM 26(4) 1983.

Wizard of Oz

- ▶ Human simulates system's intelligence & interacts with user
 - "Pay no attention to the man behind the curtain!"
- User uses computer as expected
- "Wizard" (sometimes hidden):
 - ▶ Interprets subject's input according to a preset algorithm
 - ► Makes computer/screen behave in appropriate manner
- ▶ Good for:
 - Adding simulated and complex vertical functionality
 - ▶ Testing futuristic ideas

Wizard of Oz examples

- ▶ IBM: an imperfect listening typewriter using continuous speech recognition
 - Secretary (i.e., Wizard) trained to:
 - ▶ Understand key words as "commands"
 - ▶ Type responses on screen as the system would
 - ► Manipulate graphic images through gesture and speech
- ▶ Intelligent agents / programming by demonstration
 - Person trained to mimic "learning agent"
 - User provides examples of task they are trying to do
 - ► Computer learns from them
 - ▶ Shows how people specify their tasks

In-class activity

▶ Work in groups

 Use sketching/storyboarding and start with the low-fidelity prototype for your project

https://tinyurl.com/efy2suzn

Additional Information

Summary of Lo-FI

- Prototyping
 - Speeds up design and lowers overall cost
 - Allows users to react to the design and suggest changes
 - Prototypes and scenarios are used throughout design
 - Low-fi best for brainstorming and choosing a conceptual model
 - Med/hi-fi prototypes best for fine-tuning and detailed design
- ▶ Low-fi prototyping methods
 - Scope: vertical, horizontal prototyping
 - Paper
 - Sketching
 - Storyboarding
 - Scripted simulations
 - ▶ Wizard of oz

Optional reading

► Erickson, T., & McDonald, D. W. (2007). A Simulated Listening Typewriter: John Gould Plays Wizard of Oz.

- Sketching and Storyboarding
 - https://drive.google.com/file/d/1b2UK49O8SL48S28GffG0TUM5-6gXC6MN/view?usp=sharing